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ROBUST STABILIZATION, ROBUST PERFORMANCE, AND
DISTURBANCE ATTENUATION FOR UNCERTAIN LINEAR
SYSTEMS*
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Abstract — This paper presents a linear quadratic regulator approach to the robust stabilization,
robust performance, and disturbance attenuation of uncertain linear systems. The state-feedback
designed systems provide both robust stability with optimal performance and disturbance attenuation
with Hoo-norm bounds. The proposed approach can be applied to matched and/or mismatched
uncertain linear systems. For a matched uncertain linear system, it is shown that the disturbance-
attenuation robust-stabilizing controllers with or without optimal performance always exist and can
be easily determined without searching; whereas, for a mismatched uncertain linear system, the
introduced tuning parameters greatly enhance the flexibility of finding the disturbance-attenuation
robust-stabilizing controllers.

1. INTRODUCTION

The problems of robust stabilization, robust performance, and disturbance attenuation of un-
certain linear systems have drawn much attention recently. Nonlinear robust control laws that
stabilize uncertain linear systems satisfying maiching conditions were developed by Leitmann [1].
Feedback control designs based on the Algebraic Riccati Equation (ARE), which adjust a scalar
to achieve stabilization of the systems with uncertainty parameters bounded by constraint sets,
were derived by Petersen and Hollot (2], Petersen [3], Schmitendorf [4], and Khargonekar et al. [5].
These approaches have generally utilized the concept that a given ARE-based control law guar-
antees the existence of a quadratic Lyapunov function (and hence, stability) for the closed-loop
uncertain linear system. Also, other recent research attention, e.g., Bernstein and Haddad {6},
Doyle et al. [7], Glover and Doyle (8], and Petersen [9], has been given to the ARE-based control
designs which stabilize a nominal system and reduce the effect of disturbances on the output to
a prespecified level. More recently, Veillette et al. [10] has proposed an ARE-based design which
not only robustly stabilizes an uncertain linear system with the structured uncertainty in the
system matrix, but also provides disturbance attenuation with a robust He,-norm bound.

In this paper, based on linear quadratic regulator theory and Lyapunov stability theory,
we develop linear state-feedback control laws for robust stabilization, robust performance, and
disturbance attenuation of a given uncertain linear system with the uncertainties existing both
in the system matrix and the input matrix. The proposed design procedures can be applied to
both matched and mismatched systems. The paper is organized as follows. First, the matching
conditions for uncertain linear systems to be stabilized with prespecified disturbance attenuation
level are defined in Section 2. It is shown that many dynamic systems, described by second-
order monic vector differential equations, often satisfy these matching conditions. Next, linear

*This work was supported in part by the U.S. Army Research Office, under Contract DA AL-03-91-G01086,

and NASA-Johnson Space Center, under GRANT NAG 9-380.
93-24984
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68 Y.J. WANG et al.

robust-stabilizing controllers which provide disturbance attenuation and optimal performance
for matched systems with norm-bounded or structured uncertainty matrices are developed in
Section 3. Also, it is shown that linear disturbance-attenuation robust-stabilizing controllers with
optimal performance for matched systems always exist and can be easily determined without
searching. Then, in order to achieve the robust stabilization and disturbance attenuation of
mismatched systems with norm-bounded or structured uncertainty matrices, alternative linear
distrurbance-attenuation robust-stabilizing controllers are proposed in Section 4. To demonstrate
the proposed methods, two examples are illustrated in Section 5, and the results are summarized
in the conclusion in Section 6.

2. NOMENCLATURE, SYSTEMS, AND DEFINITIONS

Nomenclature
omax (M) maximum singular value of a matrix M;
Omin(M) minimum singular value of a matrix M;
M matrix norm, {M{| £ omax(M) = A2 (MTM);
I identity matrix of appropriate dimension;
0 null matrix of appropriate dimension;
M >(>)0 matrix M is symmetric positive (semi)definite;
M <(<)0 matrix M is symmetric negative (semi)definite;
P>(2)Q meansP-Q>(2)0;
P<(<)Q meansP-Q<(L)0.

Consider the uncertain linear system

#(1) = (A+ AA)z(t) + (B + AB)u(t) + Du(t), (1a)
y(t) = Cz(1), (1b)

where z(t) € R" is the state, u(t) € R™ is the control, w(t) € R? is the disturbance, y(t) € R? is
the controlled output, A € R"*", B € R**™, D € R"*4, and C € RP*" are the nominal system
matrix, input matrix, disturbance matrix, and output matrix, respectively, and AA and AB are
the associated uncertainty matrices of appropriate dimensions with respect to A and B. Note that
the uncertainty matrices AA and AB can be time-varying. We assume that the nominal system
(A, B) is controllable. Our objective is to design a linear state-feedback control law u(t) = K z(t)
such that the resulting closed-loop system matrix 4. = A+ A A+ (B+ A B) K is asymptotically
stable, and the resulting closed-loop system is optimal with respect to a performance index,
and the H,-norm of the closed-loop transfer functon matrix H(s) 2 C (sl — A.)~! D from the
disturbance input w(t) to the output y(t) is less than or equal to some prespecified disturbance-
attenuation value 6, i.e., H7 (—jw) H{(jw) < 6? I for all w € R.

To proceed with the derivation for such a control law, we need to consider two classes of
uncertain linear systems which are matched and mismatched. The system in (1) is called a
matched uncertain linear system if there exist matrices E € R™*", F € R™*™, and G € R™*¢
such that

(i) AA=BE,
(i) AB=BF,and ||F||<lor2/+F+ FT >0, and
(ii) D= BG.

The matching conditions (i) and (ii) constitute sufficient conditions (1] for the system to be
stabilizable. We shall show that the uncertain linear system is, in fact, linearly stabilizable with
any disturbance attenuation § > 0 if it satisfies conditions (i-iii).

It is important to note that a dynamical system [11] which can be modeled by a second-order
monic vector differential equation is often a matched system. This fact can be verified as follows.
Consider the second-order monic vector differential equation

(1) + (A1 + BA1)4(t) + (A2 + AAz) q(t) = (B) + ABy) u(t) + Dy w(t), (2a)
y(t) = Cy4(t) + Ca q(t), (2b)

L




Uncertain linear systems 69

where ¢(t) € R™, u(t) € R™, w(t) € R™, and y(t) € R™ are partial state, input, disturbance,
and output, respectively. The state-variable realization of the second-order vector differential
equation in (2) in a block companion form is given by
#(t) = (A+ AA)z(t)+ (B + AB) u(t) + Dw(t), (3a)
y(t) = Cz(t), (3b)

where
- 0 I _| 0 _{ 0 ]_ -
A-.[_!2 —Ax]’ B._[Bl], D_[D,]_BG’ C=[C, 4],

0
AB,

0 0

:
A4=| _aa, -a4

]:BE, AB:[ ]::BF,

with E = [-B]! A4y, ~B{ ' AAy), F = B{' ABy, and G = B{! D, assuming det(B,) # 0.
Obviously, the system in (3) satisfies the matching conditions (i-iii) provided that ||F|| < 1 or
21+ F+FT >0.

REMARK 1. In general, if the uncertain linear system in (1) satisfies the matching conditions
(i-iii), the matrices E, F, and G can be obtained from A4, AB, and D, respectively, using a
technique based on the singular value decomposition (SVD} [11]. ]

3. GUARANTEED DISTURBANCE-ATTENUATION ROBUST-STABILIZING
CONTROLLERS WITH OPTIMAL PERFORMANCE FOR MATCHED SYSTEMS

Consider the following matched uncertain linear system:

£(t) = (A+ BE)z(t)+ (B + BF)u(t)+ BGu(t), (4a)
y(t) = Cz(t). (4b)

Suppose that the only information about the uncertainty matrices in (4) is that their matrix
norms are bounded by
lE|<a and ||F|<B8<1 (5)

The following theorem guarantees that a disturbance-attenuation robust-stabilizing controlier
with optimal performance exists for the matched uncertain linear system in (4) having the con-
straints in (5).

THEOREM 1. Consider the matched uncertain linear system in (4) with the norm-bounded
uncertainty matrices described in (5). Let § > 0 be any given disturbance-attenuation constant
and Q any given symmetric positive-definite (SFD) matrix. With the selection of positive scalars
€1 > 0 and €5 > 0 satisfying

1-8

1—B—¢,0)6
a<=f and g UB-10)b

omax(G)

there always exists a SPD solution P for the following Riccati equation:

(6)

ATP+PA—PB[(I—B——ela)I—iz—GGT] BP+&1+ L cTc+@=0. (1)
6 €1 2%

Then, a disturbance-attenuation robust-stabilizing control law is given by u(t) = K z(t), where
K = —~y BT P with v > 1/2. That is, the closed-loop system matrix A. = A+ BE + (B +
B F) K is asymptotically stable and the H.,-norm of the closed-loop transfer functon matrix
H(s)=C(s1—A.)"' D (here, D = BG) is less than or equal to § for all admissible uncertainty
matrices E and F in (5). Furthermore, the state-feedback control law u(t) = —y BT P z(t) with
¥ 2 1/(1 - B) is also optimal with respect to the following performance index:

J= % / °°[zT(z)c}.~.(t) +uT(t) Ru(t)) dt, (8a)
0
[ ® ° [ ® [
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where

R=;I>0 and =-ATP-PA+PBR'BTP>0 (8b)

with A2A+BE and B2 B+ BF.

PRrRoOOF. With the selection of £; > 0 and €3 > 0 satisfying (6), it is easy to see that there always
exists a SPD solution P to the ARE in (7) [12]. To show the robust stabilization, we define

Q.2-ATP-PA.. (9a)

Then
Q=-ATP-PA-ETB"P-PBE+yPBQ2I+FT+F)BTP. (9b)

From (7), it follows that
Q. = PB[(2-7—1+/3)I+7(FT+F)] BTP+elaPBBT
—I ETBTP-PBE+2 PBGGTBTP+ C"C+Q

T
> (27-1)(1—ﬂ)PBBTP+(‘/QPBE—‘/il) (,/-lPBE—,/iI)
£y a &
6PDDTP+ CTC+Q (9¢)
Hence
Q2 2PDDTP+— cTc+Q>o for ||FI[<A<1 and -,2%, (9d)

or

Q¢>-—PDDTP+€—IECTCZO for |Fl<A<i and 73 (%e)
2

[T

Thus, based on Lyapunov stability theory [12], A, is asymptotically stable for [|F|| < # < 1 and
v21/2

To show the disturbance attenuation, we utilize the equality in (9a) and the inequality in (9e)
as follows:

(-qu—A,)TP+P(ju1-Ac)-%’PDDTP-E%CTCM (10a)
2

for all w € R. Now, we define ¢(jw) 2 (jwl — A.)~!, and premultiply DT ¢T(—jw) and
postmultiply ¢(jw) D to the inequality in (10a) to obtain

DT P¢(jw) D + DT ¢T(~jw) P D ~ %’D’ ¢T(~jw) P D DT P ¢(jw) D

~ L D7 ¢7(~ju) CT C4(ju) D 2 0. (10b)
2

Then, we complete a square term as follows:

T
(\/;"2 I- @DT¢T(—ju)PD) (\/51—21_ \/%’_ iy ¢T(fw)PD) 20, (10c)

Thus, from (10b) and (10¢) we obtain

212 o D7 ¢7(~ju) CT C(jw) D = — HT(=jw) H(jo). (10d)
2 826 826

Hence, ||[H(jw)]| < 6 for all w € R.

i~
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To show the robust performance, we let A, B, R, and Q be defined as in (8). From (9b)
and (9c¢), we have

Q=—-(A+BETP-P(A+BE)+YP(B+BF)B+BF)TP

> PBIS- DI+ y(I+F)I+FBTP+Z2PDD" P+ 5—1—607C+Q.
2
Since (I + F)(I+ F)T > (1-3)*I when ||F|| < 8 < 1, we have @ > 0 for y > 1/(1 — 3). Hence,
the state-feedback control law u(t) = —y BT Pz(t) with ¥ > 1/(1 — 3) is optimal [12] for the
system in (4) with respect to the quadratic performance index in (8). [ |

REMARK 2. The Riccati equation in (7) is constructed to account for robust stability and
disturbance attenuation for the matched uncertain system. If there is no system uncertainty (i.e.,
a = 0 and @ = 0) and disturbance attenuation is not required (i.e., § — o0), the augmented ARE
in (7) reduces to an ordinary ARE which arises in the linear quadratic regulator problem [12)].
We assume Q > 0 to facilitate the proof; however, if (A4, C) is observable, this assumption can
be relaxed to Q > 0. With the robust control law u(t) (= —y BT Pz(t) for v > 1/(1 - B)
and P > 0 being the solution of the ARE in (7)) as proposed in Theorem 1, the quadratic
performance index J in (8), which is the compromise of the weighted state energy and the
weighted control energy, can be minimized. Therefore, the robust control law u(t) is also optimal
and provides the closed-loop system with the gain margin of 1/2 to 0o and the phase margin
of at least 60° [12]. Moreover, the ARE based state-feedback and output-feedback control laws
derived in [10] provide robust stability and disturbance attenuation for an uncertain linear system
with AA # 0 but AB = 0; whereas, our ARE based state-feedback control law provides robust
stability and disturbance attenuation for an uncertain system with both A4 # 0 and AB # 0
and, also, gives an additional feature (i.e., robust performance) for the same vncertain system.
Furthermore, due to the simplicity of selecting the tuning parameters €, and ¢4 satisfying (6), the
proposed aproach can more easily determine a robust control law for matched uncertain system
by solving the ARE in (7) than the methods in [4,10,13]. 1

CoROLLARY 1. Consider the matched uncertain linear system in (4) with the norm-bounded
uncertainty matrices described in (5). Let 6 > 0 be any given disturbance-attenuation constant

and Q any given SPD matrix and h > 0 a prescribed degree of stability [12]. Let €, and €3 be
any positive scalars satisfying (6), and P be the SPD solution of the ARE:

(A+hI)TP+P(A+hI)— PB [(l—ﬂ—ela)I—%GGT]

1
xBTP+21+—CTC+Q=0. (11)
€1 526

Then, a disturbance-attenuation robust-stabilizing control law with the attenuation constant 6 is
given by u(t) = K z(t), where K = —y BT P with v > 1/2. Furthermore, the closed-loop system
matrix A, = A+ BE+(B+ BF)K has a prescribed degree of stability h [12] for all admissible
uncertainty matrices E and F in (5). g

Now we consider the matched uncertain linear system in (4) with structured uncertainty
matrices £ € R™*" and F € R™*™ described by

k
E = Ee.- E; with |e;| < g, and (12a)
=1

i
F=)fF  with |fI<F, (12b)
i=1

respectively, where ¢; and f; are uncertain parameters, and E; and F; are known constant matrices
with each matrix may having rank greater than one. Applying the SVD method [11] to the
matrices E; and F;, we can decompose each E; and F; as

Ei=T,UT and F=V,wT, (12¢)

where T, U;, Vi, and W; are weighted unitary matrices with appropriate dimensions.
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To derive the disturbance-attenuation robust-stabilizing controllers for the matched system
in (4) with the structured uncertainty matrices described in (12), we define symmetric positive-
semidefinite matrices T € R™*™ I € R"*", and VV € R™*™ as follows:

k k
T2 &n1l, U2y auvul, (13a)
izl i=1
!
1 _
VEsY AT +wiw), (13b)
i=1

with the matrices T}, U;, V;, and W; as in (12). It can be shown that 2V + F + FT > 0. Also,
from the matching condition (ii), we require 21 + F + F7 > 0. As a result, we assume that

I-V>0. (13¢)

The 1ollowing theorem guarantees that a disturbance-attenuation robust-stabilizing controller
with optimal performance exists for the matched uncertain linear system in (4) with the structured
uncertainty matrices in (12).

THEOREM 2. Consider the matched uncertain linear system in (4) with the structured uncertainty
matrices described by (12). Let § > 0 be any given disturbance-attenuation constant and Q any
given SPD matrix. With the selection of positive scalars €1 > 0 and 2 > 0 satisfying

1—-0max (V)
Tmax (T)

1—max (V) = €1 0max (T)] 6

[
and &% 722 (0) '

(14)

3PS

there always exists a SPD solution P for the following Riccati equation:
ATP+PA-PB(I-V-eT-2GGT) BTP+LvU+—CcTc+Q=0, (15

é €3 €26

where the matrices T, U, and V are defined in (13). Then, a disturbance-attenuation robust-
stabilizing control law with the attenuation constant § is given by u(t) = K z(t), where
K = —y BT P with ¥ > 1/2. Furthermore, the state-feedback control law

—— T ; -
u(t) = -y B* Pz(t) with 7> p—

is also optimal with respect to the quadratic performance index as defined in (8).

ProoF. With €; > 0 and ¢, > 0 satisfying (14), it i3 easy to see that there always exists a SPD
solution P to the ARE in (15) [12]. Define Q. as in (9a). From (15), it follows that

1
Q:=PB[2y-1)I+V+y(FT+F)] BT P+e,PBTBT P+ —U
1

—ETBTP—PBE+563PBGGTBTP+-E—IECTC+Q.
2

Since
1
VHFT+F = Y [fViVT + Wi W)+ fVi WT + W V7))
i=1
1
2 Y IV W) Vi W)T 20
i=1
L ¢ o o ® L

1™

- b

WSTIPU SR
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and

eIPBTbTP+€iU-ETBTP-PBE
1

k
=y [é; (EIPBT.-T,TBTP+€iU.-U,-T) —e.~(U.-T,7'BTP+PBT.-U;")]
1

=1

k 1 1 T
Zgled (\/EPBnije—;Ui) (\/5_1PBT.':h-\/€—_lU.') 20.

It follows that

Q2 PBIGT-DI+V-2V]B P+ 2 PBGE BT P+ L CTC 4+ Q
2

(27-1)PB(I-V)BTP+%’PBGGTBTP+€LJCTC+Q.
2

Hence,

ch%gPDDTP+$CTC+Q>0 for I-V>0 and 9>

B =

Thus, based on Lyapunov stability theory [12], A. is asymptotically stable for I — V > 0 and
v2>1/2.

The proofs for disturbance attenuation and the optimality condition are similar to those in
Theorem 1 and hence omitted. 1

REMARK 3. Note that the robust control law obtained in Theorem 1 is more conservative than
that obtained in Theorem 2 due to different uncertainty structures. In general, the control gain
obtained in Theorem 1 is larger than that obtained in Theorem 2. |

4. DISTURBANCE-ATTENUATION ROBUST-STABILIZING CONTROLLERS FOR
MISMATCHED SYSTEMS

Consider the following mismatched uncertain linear system described by
z(t) = (A+ AA)z(t)+ (B + AB) u(t) + Duw(t), (16a)
y(t) = Cz(t). (16b)

Suppose that the only information about the uncertainty matrices AA € R"*" and AB € R"X™
in (16) is that the matrix norms are bounded by

ladl<a  and  J|AB|| < 8. (17)

The following theorem will be utilized to find a disturbance-attenuation robust-stabilizing con-
troller for the mismatched uncertain system in (16) with the constraints in (17).

THEOREM 3. Consider the mismatched uncertain system in (16) with the norm-bounded uncer-
tainty matrices described in (17). Let § > 0 be a given disturbance-attenuation constant and Q
a given SPD matrix. Suppose that there exist positive scalars €, > 0, €3 € (0,2/8), and €3 > 0
such that the Riccati equation

262 é
xP+21+ LcTcrg=o (18)
5] 836

ATP+PA-P[(1-5’2—B) BBT - (e,a+£) 1-‘-’00’]
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has a SPD solution P. Then, a disturbance-attenuation robust-stabilizing control law is given by .
u(t) = K z(t), where K = —y BT P with v satisfying either %)
L °
1 1 1 1 1 1
—_—_——— = -> —_ = . 19
mh 22723 ¢ g2vzgm >0 (19) N
That is, the closed-loop system matrix A, = A+ AA+ (B + AB) K is asymptotically stable and -
the Hoo-norm of the closed-loop transfer functon matrix H(s) = C (sl - A.)~' D is less than or
equal to § for all admissible uncertainty matrices AA and AB in (17).
. ®
PROOF. Suppose that the Riccati equation in (18) has a SPD solution P. Define Q. as in d
Theorem 1. From (18), it follows that
Q. = P [(2-,- 1+ e’ﬂ) BBT + ﬂ I+7BABT+7ABBT] P
€2
+(elaPP+E-1—AATP—PAA)+563PDDTP+€L6CTC+Q. o ®
1 3
Since
2v2e,BBBT + 2—§—I+7BABT +yABBT
2
>( 2,8 B 1 AB)( %208 B ! AB)T>0 ¢ ¢
V2e:8B + Vv + >
2417 2 sz Y 2 W
and
elaPP-q--gI—AATP—PAA
1 T ® ° o
> (,/E—‘PAA—,/-"-I) ( E—‘PAA—,/iz) >0,
o &1 [4 €y
we obtain the following inequality:
Q. > (2 —1+5’ﬂ-2~,2€,ﬂ) PBBTP+6PDDTP+ LCTC+Q ° °
=(27-1) [1 - Ez"(2-,+ 1)] PBBTP+22 PDDTP+ CTC+Q
If v satisfies either inequality in (19), which implies
°
(27-1)[1-52_ﬂ(2 +1)]>0 then Qc> SppDTP +€—1—6CTC+Q>0. i
3
Thus, based on Lyapunov stability theory [12], the obtained controller u(t) stabilizes the mis-
matched system in (16) with the constraints in (17).
The proof for ||H || < & is similar to that in Theorem 1 and hence omitted. [ |
REMARK 4. The parameter £; in (18) is restricted to be in the range of (0,2/8) such that the ® ®
term (1 — €3 3/2) in (18) is greater than zero. [
Now we consider the uncertain linear system in (18) with structured uncertainty matrices
AA € R™" and AB € R"*™ described by
k
AA =) aiA;  with || <&, and (20a) ° °
i=1 :
' -
AB =) bB; with |b|<b;, (20b) '
i=1 .;'_ .
a)
L 1 ®
c T
v
° ° ° ° ® ° o e @
—— S S SR VE R P
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respectively, where a; and b are uncertain parameters, and A; and B; are known constant
matrices with each matrix may having rank greater than one. Applying the SVD method (11] to
A; and B;, we can decompose each A; and B; as

A=T,UT and B;i=ViWT, (20c)

where T}, U;, V;i, and W; are weighted unitary matrices with appropriate dimensions.

To derive the disturbance-attenuation robust-stabilizing controllers for the system in (16) with
the structured uncertainty matrices described by (20), we define symmetric positive-semidefinite
matrices T € R™*", U € R™*™, V € R"*", and W € R™*™ as follows:

T 2

R it

k
aG T, T, UéZ&,-U;U,T, (21a)

lie

O -

IID

(=l
P\DI [

!
1% Vi VT, Z w,wT, (21b)

i=1

with the matrices T}, U;, Vi, and W; as in (20). The following theorem will be utilized to find a
disturbance-attenuation robust-stabilizing controller for the mismatched uncertain system in (16)
having the constraints in (20).

THEOREM 4. Consider the mismatched uncertain linear system in (16) with the structured
uncertainty matrices described in (20). Let 6§ > 0 be a given disturbance-attenuation constant
and Q a given SPD matrix. Suppose that there exist positive scalars

1
e >0, €2E(0,m), and e3>0
such that the Riccati equation
ATP+PA—P(BBT—elT—EQBWBT—EiV-%aDDT>
2
xP+lU+—1—CTC+Q=o (22)
&1 €3 é

has a SPD solution P, where T, U, V, and W are defined in (21). Then, a disturbance-attenuation

robust-stabilizing control Jaw with the attenuation constant § is given by u(t) = K z(t), where
K = —v BT P with v satisfying either

1 1,1 1 1 1
_ st = >V == . 23
Tona (W) 22723 7 32725 W) T2 0 (23)

PROOF. Suppose that the Riccati equation in (22) has a SPD solution P. Define Q. as in
Theorem 1. From (22), it follows that

Q. = P[(2-,-1)BBT+523WBT+lv+1BABT+1ABBT] P
(elPTP+-—U AATP- PAA)+6PDDTP+—CTC+Q

Since

4'y’ezBWBT+%V+7BABT+7ABBT
2

i T
1 1
>§ b, V23 BW; £ —V; v Wit ——V,] 20
< '-=l| ’(7 257 W, imv‘) (7 2523 \/25—2 ) Z
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and

EIPTP+;1-U—AATP-PAA
1

k

=Y lal (\/e—,PT.- + \/LE_IU,-) (\/ETPT,- + -—\/-1€=1U-')T 20,

i=1

we obtain the following 1nequality:

Q.

v

PB[(2-,—1)I+52W—47252W]BTP+%‘PDDTP+ EL&C’-"C+Q
3

1
(2y-1)PB[I—e,(2y+ ) W] BT P+ %’PDDTP+ —CTC+Q.
3

If v satisfies either inequality in (23), which implies

1
@y-1)[I-e2(2y+1)W]>0, then Q.> %PDDTP+;—60TC+Q>0.
3
Thus, based on Lyapunov stability theory [12], the obtained controller u(t) stabilizes the mis-
matched system in (16) with the constraints in {20).
The proof for ||H||eo < 6 is similar to that in Theorem ! and hence omitted. |

REMARK 5. The introduction of tuning parameters, ¢;, €2, and €3 in (18) and (22), makes the pro-
posed approach more flexible in obtaining disturbance-attenuation robust-stabilizing controllers.
For instance, consider the following Riccati equation:

ATP+PA—P(BBT—612DDT)P+CTC=0, (24)

which is the ARE for the standard H, control problem (i.e. the control effort u(t) is included
in the controlled output y(t)) in [7}. Now, if there exists a P > 0 satisfying (24) with (4,C)
observable, then u(t) = —(1/2) BT P z(t) can be interpreted as a disturbance-attenuation con-
troller for the Ho, control problem associated with (16) (i.e. u(t) is not included in y(t)). It is
seen tha’ (24) corresponds to a special case of (18) or (22) (when AA = 0 and AB = 0) with
€3 = 1/6 and Q = 0. Hence, by adjusting the tuning parameter c3, the possibility of finding a
SPD solution for (22) is greatly enhanced over that for (24). Also, it should be noted that the
inequality in (23) gives an explicit bound for which the control gain is allowed to vary without
affecting robust stability and disturbance attenuation of the closed-loop system. ]

5. ILLUSTRATIVE EXAMPLES

ExXAMPLE 1. Consider a version of the pitch-axis model for the AFTY/F-16 flying at 3000 ft. and
Mach 0.6 [4,13,14]. The equations of motion are represented in the state-space form as

£(t) = (A+ AA)z(t)+ (B + AB)u(t) + Duw(t),
y(t) = Cz(t),

where the nominal system are described by

0 1 0 0 0
0 -—-0.87 4322 |, B=| -1725 -158 |,

0 099 -134 -0.17 -0.25

A
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and the structured uncertainty matrices are described by

0 0 O 0 0
AA= 0 a;y a2 f AB = bl bz
0 a3 G4 bs b4
with |a;| < 0.7, |ag| < 35, las| < 0.7, |ag] < 1.05, |by] < 2, |b5| < 0.2, [b3] < 0.02, and |b,| < 0.03.

Note that this system is matched and the structured uncertainty matrices can be expressed
as AA=BF and AB = BF, where

= 0 -0.0618a; +0.3907a3 —0.0618az + 0.3907 ay
‘T 10 0.0420a; —4.2657a3  0.0420a2 — 4.2657 a4

and

F= —0.0618 5, + 0.3907b3 —0.0618 b, + 0.3907 b4
- 0.0420 5, — 4.2657bs  0.0420by — 4.2657b4 |’

and (he disturbance matrix can be written as D = B G with

oo [ 00618 0.3907
=1 00420 —4.2657 |

The eigenvalues of A are —7.65, 0, 5.44 and the nominal system is unstable. To find a disturbance-
attenuation robust-stabilizing control law for this matched uncertain system, we determine T, U,
and V as in (13) and obtain

T:[ 1.8874 -1.9219

—1.9219 8.9777 ] ) U = diag {0, 3.0508,7.1143],

and

V= 0.17472 -0.04797
T | —-0.04797  0.20393 |-

Set the disturbance-attenuation constant 6 = 1 and choose @ = I, ¢, = 0.04 € (0,0.086), and
€2 = 0.01 € (0,0.022). The Riccati equation in (15) has a SPD solution

122.72  0.8920 3.1551
P=1] 08920 0.5816 -—0.0804 |.
3.1551 -0.0804 54.211

Then, from Theorem 2, a disturbance-attenuation robust-stabilizing control law with § = 1 can
be constructed as u(t) = K z(t), where

o nTp_ 15.924 10.019 7.8291 . _1_
K=-yB P=1y [ 21982 08988 13426 | b 723
Furthermore, the state-feedback control law
u(t) = -y BT Pz(t) with 72> — ! = 1.3149

1- Umu(v)

is optimal with respect to the quadratic performance index in (8).

To guarantee that the closed-loop system has a prescribed degree of stability h = 1, we set 8,
2, €1, €2 as before and replace A by A + I to solve the ARE in (15) for P. Then, a disturbance-
attenuation robust-stabilizing control law with § = 1, which also guarantees that the states decay
no slower than e™, can be constructed as u(t) = K z(t), where

o orp_.[ 33018 10236 47750 . 1
K=-vB"P=v| (4993 08007 20.907 with 23
° ° ° Py ° °




.:t
[ :v
78 Y.J. WANG et al. Py PY
’ ’
When the requirement of disturbance attenuation is relaxed, i.e. § — o0, a robust-stabilizing
control law u(t) = K z(t) = —y BT P z(t) for the matched system is determined by solving the
ARE in (15) for P with @ = I and £, = 0.04 as before. The feedback gain is given by %
. _ Tp_ 56870 6.6475 10.092 . 1 o L
K=-vB"P=y [ ~0.1324 07230 32506 | VR 123
X
Note that even with AB # 0, the obtained control gain is smaller in magnitude than those
obtained in [4,13] for the same uncertain system but with AB = 0. Moreover, the proposed
method is easier to use in obtaining a robust-stabilizing control law than those in [4,13}, beacause
only one Riccati equation needs to be solved for the proposed approach. [ | ® ®
ExaMPLE 2. The dynamics of a helicopter in a vertical plane for an airspeed range of 60~170
knots are given in [4,15]. There are four state variables—z, = horizontal velocity (knot/sec),
z, = vertical velocity (knot/sec), z3 = pitch rate (deg/sec), and z4 = pitch angle (deg)—and
two control variables—u; = collective pitch control and uz = longitudinal cyclic pitch control.
In the airspeed range of 60 knots to 170 knots, significant changes occur only in element a3z, a4, PY °®
and bgy. For this range of operating conditions,
-0.0366 0.0271  0.0188 —0.4555 0.4422  0.1761
A= 0.0482 -1.01 0.0024 -4.0208 B~ 3.0447 --7.5922
| 0.1002 02855 -0.707 13220 |’ ~ | -5.52 4.99 ’
0 0 1 0 0 0
° o
D=1[0,0,01T, C=[01,0,0]
0 0 0 O 0 0 °® s ®
AA = 0 0 0 0 AB = So1 0
- 0 r3a 0 T34 ’ 0 D !
0 0 0 O 0 0
with |rap] < 0.2192, |ras] < 1.203), and |s21] < 2.0673. Define T, U, V, and W as in (21) and
obtain
] °
T = diag [0, 0, 1.4223, 0), U = diag [0,0.2192, 0, 1.2031},
V = diag [1.03365, 0], W = diag [0,1.03365,0,0].
Set the disturbance-attenuation constant § = 0.5 and choose Q = I, £ = 1, €2 = 0.25 and
€3 = 0.25, the Riccati equation in (22) has a SPD solution ® L
9.9891 -0.6427 -1.2810 -11.2650
p= -0.6427 1.0287  0.8892 2.0922
- —-1.2810 0.8892 1.2521 3.4268
-11.2650 2.0922 3.4268 19.4367
Then, from Theorem 4, a disturbance-attenuation robust-stabilizing controller can be constructed o 1
as u(t) = K z(t) = —y BT P z(t), where
— _opTp_ ~9.5318 2.0603 4.7707 17.5269
K=-vB P=1v [ ~0.2459 34864 07284 0.7682 ]
with ® ®
1 1 1
—_— _ _=12093> 9> -
2, max(y;) 2 12093272 2
) «
‘@ °
° ° ° ° ° ° [ o o
- " .4 ’
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To show the flexibility of the proposed method due to the introduction of the tuning pa-
rameters, we let AA=0and AB=0(ie.,, T=0,U=0,V =0, and W = 0), and set the
disturbance-attenuation constant 6 = 0.1. The ARE in (24) which is now identical to (22) with
Q =0 and €3 = 1/6 = 10 does nut have a SPD solution; however, with Q = 0 and by adjusting
€3 = 0.25, the ARE in (22) has a SPD solution. Hence, the desired disturbance-attenuation
state-feedback control gain with 6 = 0.1 is given by

K= ~-0.0033 -2.1201 0.2444  0.4382 f >l
- 0.0063 5.8232 0.0755 -0.3804 o Ty

Thus, the introduction of the tuning parameters indeed enhaces the flexibility of the proposed
method in finding the disturbance-attenuation robust-stabilizing controllers. Note that the above
comparison does not imply that the solution in (24) is conservative because (24) is originally
derived for the standard H,, control problem with u(t) inc'nded in the controlled output y(t).
However, when dealing with the disturbance attenuation control problem in (16) with u(¢) not
included in y(t), (22) does lead to better disturbance attenuation (smaller 8) than (24) due to
the introduction of the tuning parameters in (22). 1

REMARK 6. While the introduction of tuning parameters provides additional flexibility, the ap-
plication of Theorem 4 to a given mismatched uncertain linear system, in general, may not always
lead to a robust control law. However, in our other simulation examples, we have successfully
determined various robust control laws via appropriate adjustment (i.e., successive reduction) of
the tuning parameters, £, €5, and €3 in (22), without numerical problems. [ ]

6. CONCLUSION

Based on the LQR theory and Lyapunov stability theory, new disturbance-attenuation robust-
stabilizing controllers have been developed for matched and/or mismatched uncertain linear sys-
tems. It has been shown that dynamic systems, described by second-order vector differential equa-
tions, often satisfy the matching conditions and that disturbance-attenuation robust-stabilizing
controllers {with optinal performance if {|AB|| < 1/2) always exist for matched uncertain linear
systems which contain structured or norm-bounded uncertainty matrices. For mismatched un-
certain linear systems , two theorems have been developed for finding disturbance-attenuation
robust-stabilizing controllers. These disturbance-attenuation robust-stabilizing control laws can
be easily constructed from the symmetric positive-definite solution of the augmented Riccati equa-
tion. Also, the proposed approach is more flexible than some existing methods in the sense that
additional tuning parameters (such as £, v, and h, etc.) have been introduced in the derivations
to achieve robust stabilization, robust performance, and disturbance attenuation for uncertain
linear systems. Two practical examples have been presented to illustrate the results.
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